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GRAVITATIONAL WAVES

DANIEL SIGG

LIGO Hanford Observatory, P.O. Box 1970 S9-02,
Richland, WA 99352, USA
E-mail: sigg d@ligo.mit.edu

A new generation of long baseline gravitational wave detectors is currently under
construction (LIGO, VIRGO, GEO and TAMA). They incorporate high sensitive
Michelson interferometers and have a design goal of measuring displacements of
order 10−17 m r.m.s., integrated over a 100 Hz bandwidth centered at the minimum
noise region. The purposes of these detectors is to observe gravitational waves
from astrophysical sources at cosmological distances, and to open a new view to
the universe by collecting information not accessible by conventional telescopes.
These lectures present a description of the most promising candidate sources; and
summarize the design characteristics of interferometric detectors—in particular,
the Laser Interferometer Gravitational-wave Observatory (LIGO).

1 Introduction

According to general relativity theory gravity can be expressed as a space-
time curvature1,2. One of the theory predictions is that a changing mass
distribution can create ripples in space-time which propagate away from the
source at the speed of light. These freely propagating ripples in space-time
are called gravitational waves. Any attempts to directly detect gravitational
waves have not been successful yet. However, their indirect influence has been
measured in the binary neutron star system PSR1913+163,4,5,6.

This system consist of two neutron stars orbiting each other. One of the
neutron stars is active and can be observed as a radio pulsar from earth.
Since the observed radio pulses are Doppler shifted by the orbital velocity,
the orbital period and its change over time can be determined precisely. If
the system behaves according to general relativity theory, it will loose energy
through the emission of gravitational waves. As a consequence the two neutron
stars will decrease their separation and, thus, orbiting around each other at a
higher frequency. From the observed orbital parameters one can first compute
the amount of emitted gravitational waves and then the inspiral rate. The
calculated and the observed inspiral rates agree within experimental errors
(better than 1%).

Gravitational waves are quite different from electro-magnetic waves. Most
electro-magnetic waves originate from excited atoms and molecules, whereas
observable gravitational waves are emitted by accelerated massive objects.
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Also, electro-magnetic waves are easily scattered and absorbed by dust clouds
between the object and the observer, whereas gravitational waves will pass
through them almost unaffected. This gives rise to the expectation that the
detection of gravitational waves will reveal a new and different view of the
universe. In particular, it might lead to new insights in strong field gravity
by observing black hole signatures, large scale nuclear matter (neutron stars)
and the inner processes of supernova explosions. Of course, stepping into
“uncharted territory” also carries the possibility to encounter the unexpected
and to discover new kinds of astrophysical objects.

Table 1 shows an overview of the gravitational wave frequency bands,
their most mature detection methods and their most likely sources.

Currently, a number of long baseline laser interferometers are under con-
struction with the goal to be operational at the beginning of the new millen-
nium. These interferometers incorporate high power stabilized laser sources,
complicated optical configurations, suspended optical components and high
performance seismic filters. They have arm lengths of up to 4 km and operate
in a ultra high vacuum environment.

Table 1. Overview of frequency bands, detection methods and sources (see Ref.7, and ref-
erences therein). NS – neutron star and BH – black hole.

f(Hz) λ method source

∼ 10−16 ∼ 109 lt.yrs. anisotropy of
µwave background primordial

∼ 10−9 ∼ 10 lt.yrs. timing of milli
second pulsars

primordial,
cosmic strings

∼ 10−4

to 10−1

∼ 0.01 AU
to 10 AU

Doppler tracking
of spacecraft,
laser interferometer
in space (LISA)

binary stars,
supermassive
black holes

∼ 10
to 103

∼ 300 km
to 30, 000

laser interferometers
on earth
(VIRGO, LIGO,
GEO, TAMA)

inspirals:
NS/NS,
NS/BH,
BH/BH

∼ 103 ∼ 300 km Cryogenic resonant
bar detectors

supernovæ
spinning NS
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Section 2 introduces gravitational waves and their general relativistic de-
scription; section 3 presents a summary of promising astrophysical sources
which could be strong enough for a first direct detection. Section 4 de-
scribes laser interferometers and, in particular, the Laser Interferometer
Gravitational-wave Observatory (LIGO) Project.

2 Waves in General Relativity

2.1 Weak field approximation

General Relativity predicts gravitational waves as freely propagating ‘ripples’
in space-time1,2. Far away from the source one can use the weak field approx-
imation to express the curvature tensor gµν as a small perturbation hµν of
the Minkowski metric ηµν (see, for example, Ref.8):

gµν = ηµν + hµν with |hµν | � 1 (1)

Using this ansatz to solve the Einstein field equations in vacuum yields
a normal wave equation. Using the transverse-traceless gauge its general
solutions can be written as

hµν = h+(t − z/c) + h×(t − z/c) (2)

where z is the direction of propagation and h+ and h× are the two polar-
izations (pronounced ‘plus’ and ‘cross’):

h+(t − z/c) + h×(t − z/c) =




0 0 0 0
0 h+ h× 0
0 −h× h+ 0
0 0 0 0


 e(iωt−ikx) (3)

The above solution describes a quadrupole wave and has a particular
simple physical interpretation (see Fig. 1): Let’s assume two free masses are
placed at positions x1 and x2 (y = 0) and a gravitational wave with + po-
larization is propagating along the z-axis, then the free masses will stay fixed
at their coordinate positions, but the space in between—and therefore the
distance between x1 and x2—will expand and shrink at the frequency of the
gravitational wave. Similarly, along the y-axis the separation of two points
will decrease and increase with opposite sign. The strength of a gravitational
wave is then best expressed as a dimension-less quantity, the strain h which
measures the relative length change ∆L/L.
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Figure 1. Direction of space deformation for a gravitational wave propagating along the
z-axis, + polarization (a) and × polarization (b).

Table 2 shows a comparison between gravitational wave and electro-mag-
netic waves9. The combination of measuring the amplitude of a gravitational
wave and having a large solid angle acceptance makes the event rate of gravi-

Table 2. Comparison between electro-magnetic and gravitational waves9.

electro-magnetic waves gravitational waves

medium space as medium space-time itself

source incoherent superposition
of atoms and molecules

coherent motion of
huge masses

resolution imaging – λ small
compared to source

λ ≥ scale of sources
no spatial resolution

interaction absorbed, scattered and
dispersed by matter

very small interaction
no shielding

frequency 107 Hz and up 104 Hz and down

detection measure power (light) and
amplitude (radio) measure amplitude

acceptance detectors are directional detectors accept
large solid angles
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tational wave detectors scale with the third power of their sensitivity. In other
words, every improvement of a factor of 2 in sensitivity will increase the event
rate of astrophysical sources by a factor of 8.

Electro-magnetic waves which are visible to an observer on earth are usu-
ally produced in the outer layers of an astrophysical object, whereas grav-
itational waves carry information about the inside behaviour and the mass
distribution of an object. Arguably, the information obtained by the two
will be quite different; and it is difficult to predict gravitational sources from
electro-magnetic observations.

2.2 Gravitational wave amplitudes

Before looking at possible detection techniques we (very) roughly estimate
how large the observed effect of a gravitational wave form an astrophysical
source could be. If we denote the quadrupole of the mass distribution of a
source by Q, a dimensional argument—together with the assumption that
gravitational radiation couples to the quadrupole moment only—yields:

h ∼ GQ̈

c4r
∼ G(Enon−symm.

kin /c2)
c2r

(4)

with G the gravitational constant and Enon−symm.
kin the non symmetric

part of the kinetic energy. If one sets the non-symmetric kinetic energy equal
to one solar mass

Enon−symm.
kin /c2 ∼ M� (5)

and if one assumes the source is located at inter-galactic or cosmological
distance, respectively, one obtains a strain estimate of order

h
<∼ 10−21 Virgo cluster (6)

h
<∼ 10−23 Hubble distance (7)

By using a detector with a baseline of 104 m the relative length changes
become of order:

∆L = hL
<∼ 10−19 m to 10−17 m (8)

This is a rather optimistic estimate. Most sources will radiate significantly
less energy in gravitational waves. We add that the observable effect is not
small because the radiated energy is small—in contrary it is huge—but rather
because space-time is a “stiff medium”.
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2.3 Gravitational wave frequencies

Similarly, one can estimate the upper bound for the frequencies of gravita-
tional waves. A gravitational wave source can not be much smaller than its
Schwarzshild radius 2GM/c2, and cannot emit strongly at periods shorter
than the light travel time 4πGM/c3 around its circumference. This yields a
maximum frequency of

f ≤ c3

4πGM
∼ 104 Hz

M�
M

(9)

From the above equation one can see that the expected frequencies of
emitted gravitational waves is the highest for massive compact objects, such
as neutron stars or solar mass black holes.

2.4 Experimental evidence for gravitational waves

The only experimental evidence for gravitational waves comes from the timing
of binary pulsar systems6,10. These systems consists of two neutron stars
orbiting each other. To be observable one of them must be active and emit
radio waves. Since pulsars emit radio waves mainly along their magnetic axis
and since their rotation axis doesn’t have to be aligned with the magnetic axis,
earth-based radio antennæ can observe a periodic radio signal if the system
is aligned so that the radio beacon passes over the earth. The frequency of
this signal is determined by the rotation period of the pulsar and is typically
of very high precision.

In a double neutron star system this periodic signal is modulated by the
orbital frequency of the two neutron stars and can therefore be used to pre-
cisely determine the orbital period and phase. The first double pulsar system,
PSR B1913+16, was discovered by Hulse and Taylor in 19743,4,5. It is located
in the Milky Way, its orbital period is ∼ 8 hours and the received radio signal
repeats itself at a rate of ∼ 17/sec. The emission of gravitational waves brings
the two neutron stars closer together, and thus increase the orbital frequency.
Fig. 2 shows the advance of the orbital phase as function of time relative to
a system which would have a constant orbital period. The loss of potential
energy in this system is in agreement with the emission of gravitational waves
predicted by general relativity theory10,11. As a consequence the two neutron
stars will merge in about 300 million years.

Due to their tiny effect on space-time the direct observation of gravita-
tional waves has not been successful until now. A list of the most mature
methods, their applicable frequency band and the most likely sources in this
band were already presented in Table 1.
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Figure 2. Advance of the orbital phase in the binary pulsar system PSR B1913+16. The
plot is taken from Ref.10.

3 Astrophysical sources

Only massive astrophysical object are good candidates for emitting gravita-
tional waves which can be detected by an observer on earth. A more extensive
overview of promising sources of gravitational waves can be found in Ref.7;
we only give a brief summary here.

3.1 Coalescing compact binaries

Compact binaries are among the best candidates to be first seen by an earth-
based gravitational-wave antenna. Compact binaries can consist of either
two neutron stars, two black holes or one of each. Due to their small size
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(∼ 20 km in case of a neutron star), they can orbit each other at close range
and a high orbital frequency (up to ∼ 500 Hz). Being very close and rotating
fast means that the second time derivative of the mass quadrupole moment
is large and, hence, gravitational waves are emitted with a high efficiency.
Indeed, the radiated energy is so large, that a double neutron star system
which is 500 km or 100 km apart will loose all its potential energy within a
couple of minutes or seconds, respectively. Since the emission of gravitational
wave becomes more efficient at closer range, the waveform is a chirp signal
(see Fig. 3 and Ref.12): increasing both in amplitude and frequency with time,
until the two object are close enough to merge. To first order the the chirp
signal can be described by the change of its frequency over time ḟ and by its
amplitude A:

ḟ ∝ M5/3
c f11/3 +

(
relativistic corrections

M1, M2, S1, S2

)
(10)

A ∝ korbitM
5/3
c

f2/3

r
(11)

with Mc the chirp mass

Mc =
(M1M2)3/5

(M1 + M2)1/5
, (12)

f the orbital frequency, M1, M2, S1 and S2 the mass and spin of the two
compact objects, respectively, korbit a constant accounting for the inclination
of the source orbital plane and r the distance to the source. If enough binary
systems are detected, one can average over orbital parameters and can use
them as standard candles. (One can determine the distance from the second
equation using the chirp mass from the first equation.)

Being able to determine the exact waveform of an inspiral event will also
reveal additional information about the system itself (see, for example, Ref.13):

• harmonic content ⇒ eccentricity of orbit

• even-odd modulation ⇒ mass ratio of the two objects

• modulation of waveform ⇒ spin-orbit coupling (mainly frame dragging
in black-hole systems)

• higher-order corrections to waveform sweep⇒ individual mass and spin
of constituents
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Figure 3. Chirp waveform from an inspiral event of a compact binary system. On the right
hand side the dependency of the waveform on the orbital eccentricity e and the orbital
inclination ι is demonstrated. The plot is taken from Ref.14.

• end point (merger) ⇒ large scale nuclear matter. If the nuclear state
equation of a neutron star is soft the merger may happen earlier due to a
hydrodynamic melting effect. On the other hand the gravitational field
of the companion star may trigger the neutron start to fall into a black
hole before the actual merger.

Calculating waveforms for coalescing compact binaries is straight forward,
if the distance between the two objects is large, but for black hole mergers it
is a formidable challenge. The coalescence of two black holes can be roughly
divided into three phases:

• inspiral: The two black holes are well separated and the waveform of the
emitted gravitational waveform is known,

• merger: The horizons of the two black holes merge together and the
calculation of the exact waveform requires extensive simulations on a
super computer, and

• linear pulsations: The two black holes have merged into a single black
hole in an excited state. The excited state can be treated as a linear
pulsation which decays by emitting gravitational waves.
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3.2 Binary stars

Ordinary binary stars are one of the most reliably understood sources for
periodic gravitational waves. Binary stars typically have orbital periods larger
than an hour and, correspondingly, gravitational wave frequencies ≤ 10−3 Hz.
This means that only space-based detectors will be able to detect them by
integrating over long time periods (see section 4.4).

3.3 Rotating neutron stars

A rotating neutron star will emit gravitational waves if its mass distribution
is non axis-symmetric along the rotation axis. A non axis-symmetric mass
distribution could be due to extremely strong magnetic fields which deform
the star, due to its past history which created the star in a deformed state,
or due to accretion of matter from a companion star.

3.4 Neutron star instabilities

Only recently, it was recognized that gravitational radiation tends to drive
the r-modes (hydrodynamic currents within the star’s core) of all rotating
stars unstable15,16,17. Gravitational radiation couples to these modes primar-
ily through the current quadrupole, rather than the quadrupole of the mass
distribution. These neutron stars can spin down to a fraction of their initial
frequency within a relatively short period of time (∼ 1 year).

3.5 Supernovæ

Supernovæ have all the attributes associated with a good gravitational wave
source: they weigh several solar masses, they are compact and they experience
large accelerations. However gravitational radiation only couples to a chang-
ing quadrupole moment and, hence, if a supernova collapse and the subsequent
explosion have an axial symmetry, no gravitational waves are emitted.

There are several possible mechanisms which could overcome this deficit:

• Initial density and temperature fluctuations may trigger the collapse un-
evenly,

• High rotation speeds can lead to a bar instability,

• Hydrodynamic instabilities could introduce large convection streams
which may effect the initial implosion
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• A reminiscent neutron star may experience a strong boiling shortly after
its formation.

It is unlikely that each and every supernova event will be exactly axis
symmetric, but how large the asymmetries are and how often these asym-
metries lead to detectable gravitational waves is very much uncertain at this
time.

If a supernova is seen both in the electro-magnetic and the gravitational
wave spectrum, one will also be able to compare the speed of light with the
propagation speed of gravitational waves (general relativity theory predicts
them to be the same).

3.6 Supermassive black holes

An other good sources of gravitational waves are supermassive black holes
(M > 105M�) eating surrounding objects. However, due to their size the
frequency band of interest is lower than the one for the above sources. Typical
frequencies are in the mHz regime and will not be accessible by earth-based
observations due to limitations posed by seismic activities and gravity gradient
noise (see next chapter). However, these sources are prime candidates for
space-based antennæ.

3.7 Stochastic background

Density fluctuations in the early universe can lead to a stochastic background
of gravitational waves (similar to the microwave background). Measuring the
spectrum of the stochastic background would connect us to the Planck area
and would be a good mean to discriminate different cosmological models (in-
flation, cosmic strings, QCD phase transitions). However, for most models the
predicted amplitude of the stochastic background is well below the sensitivity
of what is technologically achievable today or in the intermediate future.

4 Laser interferometers

The idea of detecting gravitational waves using a Michelson interferometer
was discovered by several groups independently18,19,20,21, and lead to the first
prototype of an interferometric detector22,23. The idea took a significant step
forward when R. Weiss21 performed a study which identified all the important
noise sources which limit the instrumental sensitivity (see next section).

There are two complementary approaches to detect gravitational waves
with laser interferometers: space-based and earth-based. A space-based an-
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tenna is free from seismic excitations and can utilize long arm lengths of order
1010 m. It is best suited to detect gravitational waves in a frequency band
between ∼ 10−4 Hz and ∼ 10−1 Hz. An earth-based antenna is limited by
gravity gradient noise below a couple of Hz; in reality, seismic noise probably
sets this limit even higher. Earth-based detectors have their best sensitivity
in a frequency band between ∼ 101 Hz and ∼ 103 Hz.

4.1 Noise sources

Measuring length deviations smaller than the proton radius puts high require-
ments on the technology used to build these instruments. It also requires a
good understanding of physical and technical noise sources which possibly
limit the gravitational wave sensitivity. The design sensitivity of the Laser
Interferometer gravitational wave Observatory (LIGO) Project is shown in
Fig. 4. It shows that the sensitivity at low frequency, f < 50 Hz, is due to
seismic noise, at intermediate frequencies, 50 Hz< f < 150 Hz, due to thermal
noise and at high frequencies, f > 150 Hz, due to laser shot noise. The follow-
ing paragraphs are listing noise sources influencing the strain measurement by
directly affecting the laser light (limiting noise sources for initial earth-based
interferometric detectors are shown in bold):

• shot noise: The fluctuations of the number of photons in the input
beam causes fluctuations of the signal at the anti-symmetric port. For
a power-recycled Michelson interferometer with Fabry-Perot arm cavi-
ties (see section 4.2) one obtains an equivalent shot noise limited strain
sensitivity of

hshot(f) ∼
√

1 + (f/fFPI)2

Nbounce

λ

2πL

√
hν

GRCPin
(13)

with fFPI the cavity pole, Nbounce the average number of effective bounces
in the arms, λ and ν the laser wavelength and frequency, respectively, L
the arm length, GRC the power-recycling gain and Pin the input laser
power. Fig. 5 shows the sensitivity spectrum of the phase noise interfer-
ometer at MIT24, demonstrating that it is technically possible to achieve
shot noise limited sensitivity above a couple of 100 Hz.

• light amplitude and laser frequency noise: In a perfect Michelson inter-
ferometer common-mode noise sources such as the laser amplitude and
frequency noise do not propagate to the anti-symmetric port. But in
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reality, any small imbalance between the two Michelson arms will couple
laser noise into the gravitational wave band. In a power-recycled Michel-
son interferometer with Fabry-Perot arm cavities, the amplitude noise
mainly couples through differential deviation from resonance, whereas
laser frequency noise couples through arm cavity differences in reflectiv-
ity and frequency response, and through differences in the path lengths
of the Michelson. Even so these coupling coefficients are generally small,
together with the required strain sensitivity, it still translates to very
stringent requirements on the laser.

• oscillator phase and amplitude noise: A heterodyne detection scheme (see
section 4.3) requires an oscillator to generate the rf modulation sidebands.
Phase and amplitude noise of this oscillator can be coupled to the anti-
symmetric port through differential arm length deviations.
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Figure 5. Spectral sensitivity of the MIT phase noise interferometer (see Ref.24). Above
500 Hz the spectrum is shot noise limited at a level close to the one needed for initial earth-
based detectors. The additional features seen in the spectrum are due to 60 Hz powerline
harmonics, wire resonances (500 Hz – 600 Hz), optical mount resonances (700 Hz – 800 Hz),
calibration line (2 kHz) and resonances of the magnet standoffs (∼ 4 kHz).
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• scattered light: Light which scatters out of the beam path because of an
imperfect optical surface and which then scatters from an outside surface
back into the interferometer will produce a parasitic interference driven
by the motion of the outside scattering surface. Extreme care is taken
to isolate the optics of the interferometer from seismic excitations. It is
important not to by-pass this isolation through parasitic interference from
surfaces directly connected to the ground. Even if the motion is slow, it
can be larger than a wavelength and, thus, cause an up-conversion of
seismic noise to the gravitational wave band.

Back scattering is the main reason the interferometer beams are contained
in vacuum and not guided through fiber optics.

• beam jitter: Jitter of the input beam, both lateral and in angle, can
couple to the anti-symmetric port through static angular misalignments
of the interferometer.

• residual gas column density fluctuations: Density fluctuations in a gas
induce fluctuations of the refractive index and lead to Rayleigh scattering.

Another set of noise sources cause displacement noise by introducing fluc-
tuation forces which are moving the end points of the interferometer:

• seismic noise: The earth surface is in constant motion because of seis-
mic and volcanic activities, because of ocean waves “hammering” on the
shores, because of wind and because of the tidal forces of the moon. Seis-
mic noise is most pronounced at low frequencies (0.1 Hz to 10 Hz) and
falls off quickly at higher frequencies. Typical seismic noise levels are

x(f) ' 10−9 m/
√

Hz for 1Hz < f ≤ 10Hz (14)

x(f) ' 10−7

f2
m/

√
Hz for f > 10Hz (15)

For initial earth-based interferometers roughly an attenuation of 9 orders
of magnitude is required at frequencies around 100 Hz.

• thermal noise in the suspension elements: Thermally driven mo-
tions of the test masses (optical components) will limit the initial sensitiv-
ity of earth-based detectors in the intermediate frequency range around
100 Hz. The magnitude of these motions depends on kBT , with kB the
Boltzmann constant and T the temperature. To investigate the effect of
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thermal noise one has to look at its spectral density. There is a deeper
connection between the dissipation mechanism of a system and the power
spectral density of the random displacements. Low loss systems typically
have high Q resonances. Most of the random motion is concentrated in a
small bandwidth around these resonances. By decreasing the dissipation
of a system, one can increase the Q and at the same time reduce the
spectral density of the random displacements away from resonance (for a
more detailed description of thermal noise see for example25).

A simple way to obtain a low loss system is to suspend the test masses in
form of a pendulum. The restoring force of a pendulum has two compo-
nents: gravity and the elasticity of the suspension wire. For all practical
purposes the “gravitational spring” is lossless, and only the elastic spring
constant has a dissipative fraction. As long as the wire is reasonably fine,
the elastic spring constant is much smaller than the gravitational spring
constant. Typically, the pendulum frequency for a suspended test mass
is around ∼ 1 Hz. Above resonance the spectral density falls as f5/2

(frictional damping).
The effect of thermal noise on the strain sensitivity of an interferometer
is proportional to the (average) number of effective bounces of the laser
beam. This is the main reason to favor a long baseline design with a
low number of bounces over a shorter design with a higher number of
bounces.

The sensitivity curve of the Caltech 40 m interferometer26 is shown in
Fig. 6. It clearly demonstrates the importance of thermal noise.

• thermal noise driving mirror normal modes: The equipartition
theorem states that every eigenmode of a system is excited by thermal
noise to a mean energy of kBT/2. This is also true for the “drum” modes
of the test masses. Typically, the frequencies of these eigenmodes is in
the kHz regime.

• radiation pressure imbalance: The number of photons hitting either end
test mass will fluctuate due to the photon count statistics. The recoil of
these photons will then introduce a small force which pushes on the test
masses. For a power-recycled Michelson interferometer with Fabry-Perot
arm cavities one obtains a radiation pressure equivalent strain sensitivity
of

hγP (f) ' 2
π2

Nbounce

√
GRCPinhν

LMcf2
(16)
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Figure 6. Spectral sensitivity of the Caltech 40 m interferometer (see Ref.26). It shows a
displacement sensitivity comparable to the one of initial earth-based interferometers. The
seismic noise prediction is an empirical one based on measurements of the ground noise and
the transfer function of ground motion to interferometer displacement. The thermal noise
prediction is a theoretical one based on measured frequencies and Q’s for various modes
and the assumption that the loss function is a constant for each mode. The shot noise
curve is calculated theoretically and has been confirmed experimentally to within ∼ 20%.
The broad peaks near 600, 1200 and 1800 Hz are sets of narrow violin-mode resonances
of the test mass suspension wires excited by thermal noise which blend together in this
relatively low resolution (approximately 1 Hz bandwidth) spectrum. The remaining peaks
are largely instrumental artifacts. The most numerous are powerline frequency harmonics
caused by electrical interference (marked “L”) in the electronics used for this measurement.
The peaks at 80 and 109 Hz are pendulum pitch-mode resonances.

with M the mass of the optical components. If one combines Eq. (13)
and Eq. (16), one can see that without increasing the test mass there is
a natural limit for a given frequency on how much one can increase the
laser power to reduce the shot noise, before the radiation pressure noise
becomes a problem.
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• “radiometer” force: Photons absorbed in the mirror coating can transfer
their energy to molecules which are bouncing off the mirror surface. The
increased recoil of these molecules will apply an additional force to a test
mass.

• gravity gradients: Any mass placed nearby an optical component will
apply a force through gravity. Moving masses such as seismic waves
compressing the earth and density fluctuations in the air are the main
concerns, since they give rise to gravity gradients. For earth-based detec-
tors this will set the ultimate limit in sensitivity at very low frequencies.

• electric field fluctuations: Varying external electric fields together with a
(induced) surface charge can also affect a test mass.

• magnetic field fluctuations: Presently, most suspended test masses incor-
porate actuators for the active control system which consist of permanent
magnets glued to the back of the test mass and a coil driver mounted to
the suspension cage. External magnetic fields can then apply a force to a
test mass, either, through an imbalance in the magnets or through field
gradients.

• cosmic ray muons: Cosmic ray muons can be produced at high altitude
when a high energy proton enters the earth atmosphere. Because the
cross-section of muons is small they can reach the ground and in some
rare cases stop in a test mass. The recoil of the muon then looks like a
“random” force.

4.2 Interferometer configurations

Most modern designs implement improved versions of a simple Michelson
interferometer (see Fig. 7). A simple Michelson interferometer has an antenna
response function A(Ω) which is proportional to (see the appendix on how to
derive an interferometer response function):

A(Ω) ∝ sinc
(

ΩL

c

)
Michelson (17)

with sinc x = sinx/x, Ω the angular frequency of the gravitational wave
and L the length of each arm. Putting numbers into Eq. (17) shows that for
frequency between 10 Hz and 1 kHz, the optimal antenna length is of order
105 m to 107 m. This is much larger than would be feasible for an earth-
based detector. However, there is no reason that the arm of a Michelson

18



  (a)   (b)

  (c)   (d)

  (e)   (f)

laser source

anti-symmetric port

beam splitter

input test mass

end test mass

power-recycling
mirror

Fabry-Perot
arm cavity

signal recycling
mirror

Figure 7. Possible interferometer configurations for gravitational wave detectors: simple
Michelson interferometer (a), Michelson with delay lines (b), Michelson with Fabry-Perot
arm cavities (c), power-recycled Michelson with Fabry-Perot arm cavities (d), dual recycled
Michelson (e) and dual recycled Michelson with Fabry-Perot arm cavities (f). There are
many more configurations; some of them are mentioned in the text.
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interferometer cannot be folded27. Indeed, this configuration is known as a
delay line and its antenna function is proportional to:

A(Ω) ∝ sinc
(

N
ΩL

c

)
delay line (18)

where N describes the number of folds (number of bounces). In practice,
this configuration has a couple of disadvantages:

• If the number of folds is large, the mirror which is used to bounce the
laser beams forth and back, has to be large as well. This is compounded
by the fact that for long baseline interferometers the diffraction limited
beam diameter is of order 10 mm to 100 mm.

• Light scattered by an imperfect mirror away from the nominal angle of
reflection can interfere with the light from neighboring light passes and
ruin the instrumental sensitivity.

A similar effect to folding the light pass N times can be achieved by insert-
ing a Fabry-Perot cavity into each arm of the Michelson28,29,30. A Fabry-Perot
cavity consists of a partially transmitting input mirror and a high reflective
rear mirror. If the length of the Fabry-Perot is adjusted to a multiple of the
laser wavelength the cavity becomes resonant. The light power inside the
cavity builds up and simulates the effect of sending the light forth and back
multiple times. However, in this case the number of bounces is not a fixed
quantity, but rather an averaged effective value. Both the problem of the mir-
ror size and the scattering is now much reduced, since the multiple light paths
are now lying on top of each other. But, a Fabry-Perot cavity has to be hold
on resonance during operations which requires an active control system. The
antenna function of a Michelson interferometer with Fabry-Perot arm cavities
can be written as31,32:

A(Ω) ∝ sinc
(

ΩL

c

)
FPI(

ΩL

πc
) Michelson with

Fabry-Perot arm cavities (19)

The Fabry-Perot response function (power build-up inside the cavity)
depends on the input and rear mirror amplitude reflectivity coefficients, r1

and r2, respectively, and the input mirror amplitude transmission coefficient
t1 (see for example Ref.33).

FPI(x) =
∣∣∣∣ t1
1 − r1r2eix

∣∣∣∣
2

(20)
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If the mirrors have low optical losses and if the rear mirror is a high reflec-
tor, most of the power incident to a Fabry-Perot arm cavity will be reflected
back to the beam splitter. Ideally, the anti-symmetric port of the Michel-
son interferometer is set on a dark fringe to minimize shot noise. Then a
differential length change induced by a gravitational wave will leave through
the anti-symmetric port with the highest possible signal-to-noise ratio. This
in turn means that most of the injected light will leave the interferometer
through the symmetric port and be lost. But, by placing an other partially
transmitting mirror at input one can form yet another cavity—the power
recycling cavity—and recycle most of the otherwise lost light34. The inter-
ferometer response is then enhanced by the power recycling gain (additional
power build-up in the power recycling cavity).

A(Ω) ∝ sinc
(

ΩL

c

)
FPI(

ΩL

πc
)GRC

Power-recycled
Michelson with
Fabry-Perot arm cavities

(21)

By adding a partially transmitting mirror to the anti-symmetric output
port the gravitational wave signal can be made resonant35,36. This makes it
possible to shape the interferometer response, so that its sensitivity is im-
proved in a narrow frequency band around the signal resonance. In general,
this means that the sensitivity outside the resonant frequency band will be
worse. This is not a problem at lower frequencies where the interferometer
is usually limited by seismic noise. If both power and signal recycling are
implemented the configuration is called dual recycled.

The above configurations are the most common ones currently imple-
mented or designed, but there other possible layouts such as Sagnacs37, con-
figurations with an output mode cleaner, resonant recycling where the beam
splitter is turned by 90◦ to directly couple the two arm cavities34, and many
more.

4.3 Detection schemes

Most interferometer configurations require an active control system to keep
cavities locked to a resonance, or to keep the anti-symmetric port on a dark
fringe, respectively. To be able to implement a feedback system one first
needs an error signal which measures the microscopic longitudinal deviations.
Neither of the above conditions would allow for simply monitoring the power
levels, since moving away from resonance or away from a dark fringe will
decrease or increase the power levels, respectively, without indicating the di-
rection of the deviation. One could solve this problem by putting the “working
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point” of the feedback control system off resonance and towards mid fringe.
But, this technique makes both power and signal recycling impossible.

All currently built and planned interferometers therefore implement a
heterodyne detection scheme21. Historically, the first heterodyne detection
schemes implemented a longitudinal dither of the cavities. This in turn mod-
ulates the power in the cavity and, if off-resonance, yields an error signal at
the dither frequency. However, a laser source typically becomes shot noise
limited at radio frequencies (rf) only, well above dither frequencies which are
achievable in the lab.

A better scheme—the Pound-Drever-Hall reflection locking tech-
nique28,29,30—imposes phase modulate rf sidebands on the laser light itself.
An off-resonance cavity then acts as an FM-to-AM converter yielding error
signals at the rf frequency. The gravitational wave readout port usually im-
plements a suppressed carrier scheme39. A differential length deviation will
produce a signal at the carrier frequency leaking out the anti-symmetric port,
which then beats against constant rf sidebands.

4.4 LISA: A space-based interferometer

The LISA (Laser Interferometer Space Antenna) Projecta,40 is a planned
space mission, adopted by ESA and NASA, to deploy 3 satellites in solar
orbit forming a large equilateral triangle with a base length of 5 × 106 km.
The center of the triangle formation will be in the ecliptic plane 1 AU from
the sun and 20 degrees behind the earth. The main objective of the LISA
mission is to observe low frequency (10−4 Hz to 10−1 Hz) gravitational waves
from galactic and extra-galactic binary systems, including gravitational waves
generated in the vicinity of the very massive black holes found in the centers
of many galaxies. The three LISA spacecrafts flying in formation will act as
a giant Michelson interferometer, measuring the distortion of space caused
by passing gravitational waves. Each spacecraft will contain two free-floating
“proof masses”. Lasers in each spacecraft will be used to measure changes in
the optical path lengths with a precision of 20 pm. If approved, the project
will start in the year 2005 with a planned launch in 2008.

A sensitivity plot is shown in Fig. 8. The primary goal of the LISA
mission is to detect and study in detail gravitational wave signals from sources
involving massive black holes. LISA will certainly observe distinguishable
signals from thousands of binary systems containing compact stars, and be
able to determine the number and distribution of such binaries in our galaxy.

ahome pages: http://www.lisa.uni-hannover.de
http://lisa.jpl.nasa.gov
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Figure 8. Sensitivity curve of the Laser Interferometer Space Antenna (LISA). Most of the
LISA sources will be approximately monochromatic. The bold curve is the 1-year thresh-
old curve, the amplitude that could be detected with confidence by a single (2-arm) LISA
interferometer; it is drawn at the signal-to-noise (SNR) ratio of 5 for a fixed source that is
observed by LISA for a full year.
The gravitational wave amplitude h is shown for different types of periodic and quasiperi-
odic sources. The expected signals from some known binaries are indicated. The nearest
neutron star and white dwarf binaries at any frequency should lie in the band labeled “near-
est compact binaries”; the band below that shows the amplitude expected from “typical”
white dwarf binaries near the galactic center. Interacting white dwarf binaries (IWDB) are
systems where a low-mass degenerate helium star fills its Roche lobe and transfers mass
onto a more massive white dwarf. The shortest period stellar mass black hole binary in the
Virgo cluster might be in the position shown.
The strongest sources in the diagram are binaries of massive black holes at cosmological
distances, observed as they coalesce due to the orbital emission of gravitational waves. They
have been placed in the diagram rather arbitrarily at their coalescence frequency and at an
amplitude that correctly shows their SNR in relation to the heavy threshold curve, for a
distance z = 1.
The 1-σ gravitational wave noise produced by a possible cosmological background left from
the big bang is shown here at an energy density per decade of frequency today that is 10−8

of the total needed to close the universe. An upper limit to that generated by inflation is
also shown. There may be more galactic close white dwarf binaries (CWDB) than LISA
can resolve; a possible but uncertain effective noise level is shown. For comparison with
these backgrounds, we have drawn the LISA rms noise level (faint lower curve).
The band labeled “SUN (max)” is where solar g−modes might produce strong near zone
(Newtonian) gravitational perturbations observable by LISA. The plot is taken from Ref.40.
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Table 3. List of earth-based laser interferometers projects currently under construction
worldwide.

project length site configuration

GEOb 600 m Hannover, Germany dual recycled

LIGOc
4000 m
2000 m
4000 m

Hanford (WA), USA

Livingston (LA), USA
power-rec. Fabry-Perot

TAMAd 300 m Tokyo, Japan dual recycled

VIRGOe 3000 m Pisa, Italy power-rec. Fabry-Perot

4.5 The LIGO Project

The Laser Interferometer Gravitational wave Observatory14 is one of the new
projects to build the next generation of gravitational wave detectors. A list
of all projects currently under construction is shown in Table 3.

The essential attributes of the LIGO Project are:

• collaboration between the California Institute of Technology and the Mas-
sachusetts Institute of Technology,

• two widely separated sites under common management to make coinci-
dence measurements,

• a vacuum system to accommodate interferometers with 4 km arm length,

• the capability to operate several interferometers at each site simultane-
ously,

• the ability to accommodate interferometers of two different arm lengths,
4 km and 2 km (at one site),

• a clear aperture for the laser beam of ∼ 1 m,

• An ultimate vacuum of 10−9 torr hydrogen and 10−10 torr of other gases,

bhome page: http://www.geo600.uni-hannover.de
chome page: http://www.ligo.caltech.edu
dhome page: http://tamago.mtk.nao.ac.jp
ehome page: http://www.pg.infn.it/virgo
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• a physical environment monitor for detecting vetos caused by external
disturbances and

• a facility lifetime of at least 20 years to do astrophysical research with
gravitational waves.

All earth-based interferometric gravitational wave detectors share a sim-
ilar design philosophy. The design of these detectors is driven by the goal
to minimize the effect of noise on the instrumental sensitivity (see section
4.1). All designs use in-vacuum suspended optics build on top of a seismic
isolation system for their main interferometer mirrors. Similarly, all designs
use a highly stabilized laser source in conjunction with a mode cleaner to de-
liver a high quality laser beam to the interferometer. They all incorporate an
optical configuration which requires an active control system for microscopi-
cally adjusting cavity and Michelson lengths, in order to counteract drifts and
fluctuations introduced by seismic activities.

A brief description of the main detector components of LIGO is given
below:

• laser source: The light source is a solid state diode-pumped Nd:YAG
laser, consisting of a nonplaner master oscillator and a power ampli-
fier. The nominal output power is 10 W single mode at a wavelength
of 1064 nm. The laser is locked to a reference cavity to stabilize its fre-
quency and is spatially filtered by a pre-mode cleaner. Pockels cells are
used to impose phase modulated sidebands on the laser light before it is
launched into the mode cleaner.

• input mode cleaner: The mode cleaner is a triangular cavity with the
purpose to further filter and stabilize the laser beam.

• seismic isolation system: The seismic isolation system is a a vibration iso-
lation stack, constructed of heavy steel plates separated by coil springs.
This forms a coupled pendulum system, giving a damping factor propor-
tional to f−2 above resonance for each stage.

• suspensions: All major optical components are suspended to form a pen-
dulum using one single loop of 0.012 in. diameter steel music (piano)
wire. The pendulum frequencies are typically below 1 Hz and the mass
of a large mirrors is ∼ 10 kg. Four permanent magnets are glued to the
back to control longitudinal and angular orientation of the test mass,
and two magnets are glued to the side to control sideways motions. Cor-
responding coil drivers are mounted to the suspension cage, making it
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possible to adjust the force applied to the mirror by adjusting the elec-
tric current through the coil.

• optics: A diffraction limited laser beam which spot is of similar sizes at
the input and end test mass must have a waist size of order ∼ 30 mm –
∼ 40 mm. This requires rather large optics. In case of LIGO the masses
are circular cylinders fabricated from pieces of high-purity fused silica
with bulk absorption of less than 5 ppm/cm. They are 25 cm in diameter
and 10 cm thick. To minimize scatter and absorption losses it is crucial to
have a very good surface figure and a very low loss (≤ 1 pmm), very high
uniformity coating. Surface figures of λ/1000 rms over the the central
8 cm diameter have been achieved (after coating).

• sensing and control system: Multiple InGaAs photodetectors are used
at anti-symmetric port and for the auxiliary extraction ports to sense 4
longitudinal degrees-of-freedom and 14 angular degrees-of-freedom. The
signal is first down-converted into the baseband and then sampled by
a digitizer. Most servo functions are implemented in software, and the
signals are send to the suspension controllers through fiber optics.

The planned completion dates for the LIGO Hanford 2 km system are are
shown below:

beam tube completed, currently baked
vacuum system installed and baked
seismic isolation installation started
laser source installation started
mode cleaner end of 1998
vertex Michelson spring 1999
full interferometer 2000
engineering tests 2001
first data run 2002 and 2003
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5 Conclusions

The direct observation of gravitational waves will allow to test general rela-
tivity theory by giving direct evidence of a time-dependent metric far away
from the source and by independently probing strong field gravity41,11. It will
also provide a new and different view of astrophysical processes hidden from
electro-magnetic astronomy, such as the inner dynamics of supernova and neu-
tron star cores, or such as the coalescence phase of neutron star and black hole
mergers. Eventually, it may be possible to discriminate cosmological models
by observing or setting a limit to the stochastic background.

The new generation of gravitational wave detectors, currently under con-
struction, has the potential to open this new field of physics and may result
in new and unexpected discoveries.

There are also certain risks associated with “stepping into a unknown
territory”: Are there enough strong astrophysical sources for gravitational
waves? And, will the technology work at the required level? However, a
direct detection of gravitational waves will almost certainly bring invaluable
advance of our experimental knowledge of the universe.
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Appendix: Interferometer response function

This appendix demonstrates the techniques to calculate the antenna response
function of an interferometric gravitational wave detector. We use a power
recycled Michelson interferometer with Fabry-Perot arm cavities as an exam-
ple.

The coordinate system is chosen to be aligned with the two arms of the
interferometer, where the origin is positioned at the beam splitter and the
z-axis points vertically upwards. Spherical coordinates are defined by

r =


 rsinθcosφ

r sin θ sinφ
r cos θ


 with

{
0 ≤ θ < 2π
0 ≤ φ < π

(22)

We then define the rotation operator O(θ, φ) which rotates the z-axis in
the direction of r:

O(θ, φ) = O(φ)O(θ) (23)

where O(φ) =


 cosφ − sin φ 0

sin φ cosφ 0
0 0 1


 and O(θ) =


 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ


 (24)

We write the phase of the light which is acquired in one round-trip in one
of the interferometer arms as

Φrt(t0) =
∫ t0+t(2L)

t0

dt ω (25)

where L is the length of the arm, ω is the angular frequency of the light
and t0 the time the photon leaves the origin. We now change the integration
over time into one over length by using

dτ2 = dxµgµνdxν0 with gµν = ηµν + hµν (26)

where ηµν is the Minkovski metric and hµν is the space-time ripple due
to the gravitational wave. For a gravitational wave traveling along the z-axis,
hµν becomes in the transverse-traceless gauge8
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hµν = cos(Ωt − kz)




0 0 0 0
0
0 Ĥik

0


 with Ĥik =


 h+ h× 0

−h× h+ 0
0 0 0


 (27)

where Ω is the angular frequency of the gravitational wave, k is its wave
vector, h+ and h× are the wave amplitudes for the“+” and the “×” polariza-
tion, respectively.

For arbitrary directions one has to rotate both z and Ĥik in the direction
of the wave vector k.

kz → k(kxx + kyy + kzz) with




kx = sin θ cosφ
ky = sin θ sin φ
kz = cos θ

(28)

Ĥik → Hik = O(θ, φ)ĤikO(θ, φ)−1 ≡

hxx hxy hxz

hyx hyy hyz

hzx hzy hzz


 (29)

For an integration along the x-axis or the y-axis hxx and hyy are the only
relevant matrix elements, respectively.

hxx = − cos θ sin 2φh× + (cos2 θ cos2 φ − sin2 φ)h+ (30)
hyy = cos θ sin 2φh× + (cos2 θ sin2 φ − cos2 φ)h+ (31)

Fig. 9 shows the angular dependence of | hxx −hyy | for both polarization
and the average. Using Eq. (25) we rewrite Eq. (26) as

Φx
rt(t0) =

Ω
c

∫ L

0

dx {
√

1 + hxx cos(Ωt0 + k(1 − kx)x)+

√
1 + hxx cos(Ωt0 + k(2L − (1 + kx))x)

}
(32)

Similarly, Φy
rt(t0) can be obtained by integrating along the y-axis. Since

hxx � 1 we can expand the square root of Eq. (32) in a Taylor series. Per-
forming the integration, keeping only time-dependent terms, time-shift from
departure to arrival, and changing to a complex notation where the absolute
value denotes the amplitude and the argument denotes the phase shift, one
gets:
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Figure 9. Antenna response function for an interferometric gravitational wave detector.
The interferometer is placed at the center of the surrounding box with Michelson arms
oriented along the horizontal axes. The distance from a point of the plot surface to the
center of the box is a measure for the gravitational wave sensitivity in this direction. The
plot to the left is for + polarization, the middle one for × polarization and the right one
for unpolarized waves.

∆Φx
rt =

hxxLω

c
eiΦΩ

sinΦΩ + ikx cosΦΩ − ikxeikxΦΩ

ΦΩ(1 − k2
x)

(33)

' hxxLω

c
sinc ΦΩ cos(

kxΦΩ√
12

)ei(1+kx/2)ΦΩ (34)

where ΦΩ = LΩ/c and sincx denotes sin x/x. The approximation yields
the exact solution for a gravitational wave traveling along the z-axis. From
Eq. (34) one sees that the signal delay for photons arriving at the origin is
1 + kx/2 times half the round-trip time. The finite time a photon spends in a
Michelson arm also leads to a small correction of the signal amplitude which
would otherwise be determined by hxxL only. Fig. 10 shows the amplitude
correction and time delay of the round trip phase of a gravitational wave as
function of kx relative to one of normal incident and strength hxx. These
effects are generally small and in most cases negligible.

To calculate the response of a cavity to a gravitational wave of a certain
frequency Ω we write the electric field as a three-component vector denoting
the carrier field, the upper audio sideband with frequency +Ω and the lower
audio sideband with frequency −Ω. The round-trip operator X(Ω) can be
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Figure 10. Amplitude correction and time delay for non normal incidence. For details see
text.

expressed as42

X(Ω) =


 1 0 0

− i
2∆Φrt e−2iΩL/c 0

− i
2∆Φ∗

rt 0 e2iΩL/c


 (35)

where we neglected the factor e−2iωL/c+2iη which is unity when the cavity
is on resonance (with η the Gouy phase shift). The reflected field operator
for a cavity then becomes

Xrefl(Ω) =
(
r1 − (r2

1 + t21)
√

1 − δ X(Ω)
)(

1 − r1

√
1 − δ X(Ω)

)−1

(36)

where r1 and t1 are the amplitude reflectivity and transmission coefficients
of the input mirror and δ is the total round-trip loss (including the reflectivity
of the rear mirror). Using a carrier only in the input field Ein, the reflected
audio sidebands become

E+Ω
refl =

i

2
Grefl(Ω)∆Φrt eiΩtEin and E−Ω

refl =
i

2
G∗

refl(Ω)∆Φ∗
rt e−iΩtEin

(37)

Grefl(Ω) =
√

1 − δ t21
(1 −√

1 − δ r1))(1 −√
1 − δ r1e−2iΩL/c)

(38)

'
√

1 − δ t21
(1 −√

1 − δ r1)2
eiΩL/c

1 + i Ω
ωcav

for Ω � c

2L
(39)
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and with the cavity pole at ωcav =
1 − r1

√
1 − δ√

r1

√
1 − δ

(40)
The audio sideband signal can be simplified to

E+Ω
refl + E−Ω

refl = | G(Ω)∆Φrt | cos(Ωt + arg(G(Ω)∆Φrt))Ein (41)
≡ | g | cos(Ωt + arg g) (42)

The signal at the anti-symmetric port is then given by

Eanti = i tbsrbs

{√
1 − δx gx cos(Ωt + arg gx)−

√
1 − δy gy cos(Ωt + arg gy)

}
ERC (43)

where rbs and tbs are the amplitude reflectivity and transmission coef-
ficients for the beam splitter, respectively, δx and δy are the losses in the
(short) inside Michelson arms for the incident carrier light and the reflected
gravitational wave signal, gx and gy denote the signals from the in-line and
the off-line arm cavities, respectively, and ERC is the carrier field incident on
the beam splitter. We now write the rf sideband signal at the anti-symmetric
port as

Esb
dark = 2i|Esb| sin ωmt (44)

where |Esb| is the field strength of either rf sideband and ωm is the angular
modulation frequency. Down-converting the signal yields

Vdark = R sinωmt εPD|Esb
dark + Edark| d2 (45)

dc=
√

32R εPD

√
PRCPsb tbsrbs

{√
1 − δx Gx(Ω)∆Φx

rt−√
1 − δy Gy(Ω)∆Φy

rt

}
(46)

On the last line we returned to the complex notation where the absolute
value denotes the signal amplitude and where the argument denotes the signal
phase shift. R is the transimpedance gain of the mixer, filter, amplifier circuit
chain, εPD is the efficiency of the photodetector, PRC and Psb are the carrier
power on the beam splitter and the total sideband power at the anti-symmetric
port, respectively.
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